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Abstract 
 

The standard characterizations of frequency stability are, in the time domain, the Allan (or 
two-sample) variance and, in the frequency domain, the spectral density function (SDF).  The 
former is mathematically related to the latter by the conversion between time and frequency 
domain.  In this paper, the biases of the Fast Fourier transform (FFT) spectral estimate with 
Hanning window are checked and the resulting unbiased spectral density are used to calculate 
the Allan variance.  Both the numerical integral and the curve-fitting methods are presented to 
calculate the variances.  The numerical integral is a straightforward method to use, and we 
can get the integral approximation after eliminating some spike points from SDF, e.g. noise 
caused by ac power.  In addition, a common model for SDF is linear combinations of power-
law processes, which are distinguished by the integer powers in their functional dependence on 
Fourier frequency with the appropriate coefficients.  Fitting a form of the above model to the 
resulting SDF using standard regression techniques can estimate these coefficients.  Cutler’s 
formula is adopted to calculate the integral approximation using these coefficients.  The 
approximations of variances from these two methods are compared and analyzed.  Finally, we 
discuss the limitations and possible errors from these two methods. 
 
 

INTRODUCTION 
 
FFT spectrum analyzers generally have several different window functions available for analyzing 
signals. Recent research has shown that the Hanning window provides excellent performance for 
analyzing noise [1].  Our lab has established a phase noise measurement system including a phase noise 
standard (1,5,10,100 MHz), a single-channel noise detector, a delay line unit, and one single-channel FFT 
spectrum analyzer.  The signal reference is from a low-noise frequency reference (LNFR-400) with a 
noise level of about –173 dBc/Hz (5 MHz PM, at Fourier frequency 100 KHz).  For passive devices, the 
system can measure up to –177 dBc/Hz.  This year we also have built up a cross-correlation system, 
which can measure the noise 20 dBc/Hz below the above level.  The very short-term stability (τ＜0.5 
second) by using this phase noise measurement system is a subject of interest to us, since the traditional 
time interval counter is applicable only when τ is about 1 second.  In this paper, we are trying to 
calculate the Allan variance of the spectral density estimate from experimental results, and possible errors 
in the spectral density estimate, e.g. biases from window functions, noise from ac power, etc. will be 
considered.  In general, if the spectral density of the normalized frequency fluctuations )( fS y  is 
known, its mathematical relation to the Allan variance can be expressed as [2]: 
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where hf  is the high frequency cutoff of a low-pass filter.  The Allan variance can be easily calculated 
using numerical integration while experimental data are properly processed.  Besides, the power-law 
model is frequently used for describing phase noise, and it assumes that the spectral density of fractional 
frequency fluctuations is equal to the sum of terms, each of which varies as an integer power of Fourier 
frequency.  Thus, there are two quantities that completely specify )( fS y  for a particular power-law 
process: the slope on a log-log plot for a given range of f  and the amplitude.  The slope is denoted by 
α  and therefore αf  is the straight line on a log-log plot that relates )( fS y  to f .  The amplitude is 
denoted by αh  and hence [2-3]: 
 

⎪⎩

⎪
⎨

⎧

>

<<
= ∑

+

−=

h

h

fffor

ffforfh
fS

0

0
)(

2

2y α

α
α                     .  

 (2) 
 
Cutler derived equation (3) from equation (1) and (2): 
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The value for each coefficient αh  could be obtained using standard regression techniques, and then we 
have the Allan variance.  Details for practicing these methods are discussed in the following sections. 
 
 

THE  EXPERIMENTS 
 
The measurement system consists of a FSS1000E noise detector, a FSSM100 phase noise standard, a 
FSS1011A delay line unit, a SDI LNFR-400 low-noise frequency reference, and one SRS-760 FFT 
spectrum analyzer with a Hanning window adopted.  The measurement procedures and data recording 
are automated under the software TestStation version 3.0.   
 
The basic and simple experiment is the system noise floor test.  The LNFR-400 5 MHz output is split 
with a reactive splitter to provide two input signals.  These signals with either of them passing through 
the noise standard in advance are connected to the phase noise detector.  The output of the noise detector 
is then fed into the FFT spectrum analyzer.  A composite graph with both the calibration line and the 
corrected phase noise data is shown in Figure 1.  The noise components of 60 Hz, 120 Hz, 180 Hz, etc. 
are commonly encountered because ac power is getting into the measurement system or the source under 
test.  The use of a phase noise standard greatly speeds up the process of calibrating the noise 
measurement system, and we can quickly review the calibration of the system while looking at the final 
data.     
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CALCULATION  OF  EXPERIMENTAL  RESULTS 
 
Because biases due to linearity and SDF accuracy of FFT spectrum analyzers are typically less than 0.4 
dB with 95% confidence limits, we may temporarily neglect their influence in the process of calculating 
Allan variance.  In Figure 2, the raw data of the above-mentioned noise floor test and the ones with 
outliers removed are shown.  Notice that most of the outliers are from the noise of ac power.  In Figure 
3, we calculate the Allan deviation yσ  (square root of Allan variance) of these two spectral data using 

the numerical integration techniques with sampling time τ = 0.1 s ~ 10 s. 
 
Note that the amplitude of Allan deviation of the raw data varies up and down depending on the sampling 
time, while the other doesn’t vary obviously.  This is because in the time domain the sensitivity to a 
periodic wave varies directly as the sampling interval.  This effect (which is an alias effect) is a very 
powerful tool for filtering out a periodic wave imposed on a signal source [4].  Also found is that 
although the influence of ac power noise is important in calculating Allan deviation, eliminating these 
outliers from the raw data seems to reveal the true characteristic of the device under test (DUT) 
reasonably.  
 
Next, we will calculate the Allan deviation of the spectral data with outliers removed using the curve-
fitting methods and compare the results with the ones using numerical integration method.  In the 
frequency domain, )( fL  is the prevailing measure of phase noise among manufacturers and users of 
frequency standards, and it is defined as: 
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In Figure 1, it is a )( fL  vs. f  plot with its x-y axis in log scale.  For f = 1 Hz ~1000 Hz, we see 
that when f  increases by one decade, )( fL also goes down by one decade.  This noise process can 
be identified as flicker PM.  For f = 10 ~ 99.75 kHz, we have white PM.  We calculate the )( fS y  
first and use the functions 1

1)( fhfSy =  and 2
2)( fhfSy =  to fit the data in flicker PM and white PM 

region respectively, and then get 1h = 4.68× 10-28 and 2h = 2.61× 10-31.  This regression technique is 
called as the polynomial curve-fitting method.  The power-law processes can also be expressed as: 
 

fhfS lnln)(ln y αα +=        )2...2( +−=α                (7) 

 
We can also fit the data in log-log space with α = 1 and α = 2 and then get 1h = 4.07× 10-28 and 2h = 
2.68× 10-31.  This regression technique is called as the log scale curve-fitting method.  Figure 4 shows 
the calculated Allan deviation using Cutler’s equation with these coefficients, while the sampling time τ is 
from 0.1 to 10 s with an increment of 0.1 s.  We find that the results using both the curve-fitting methods 
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are very close, but they also keep an obvious bias from the ones using the numerical integration method.  
The former are roughly about twice as large as the latter for the whole sampling interval.  For example, 
the )1.0( sy =τσ  using curve-fitting methods is about 4.80 × 10-13, while the one using numerical 

integration is 2.24× 10-13 and, when τ = 10 s, the related values are about 4.94× 10-15 and 2.46× 10-15. 
 
 
CONCLUSIONS 
 
In this paper, we calculate and compare the Allan deviation of the experimental spectral results using the 
numerical integral and curve-fitting methods.  We find that the influence of ac power noise play an 
important role in calculating Allan deviation, so eliminating these outliers from the raw data seems to 
reveal the true characteristic of the DUT reasonably.  As for the resulting bias between curve-fitting and 
numerical integration methods, we have tried to shift the spectral estimate in the range of 10 dB based on 
the assumption that possible errors may occur in the calibration process and checked the bias, but it still 
exists without improvement.  In order to solve this problem, we will do more research in the near future. 
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Figure 1.  Phase Noise Measurement of System Noise Floor (5 MHz). 

 
 
 

 
 

Figure 2.  Raw Data and Data with Outliers Removed. 
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Figure 3.  Calculated Allan Deviation of Two Spectral Data. 
 
 
 

 
 

Figure 4.  Calculated Allan Deviation with Different Methods. 


